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Approximate solutions to the catch equation for the fishing mortality rate both forward
and backward in time are obtained with an application of the diagonal Padé approximation
of degree four to the exponential function. In either case the resulting approximation as well
as Pope’s estimate are shown to serve quite well as starting values for Newton’s Method which
is used to obtain a numerical solution of the catch equation. Convergence criteria for New-
ton’s Method are discussed in each setting.
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Une application de ’approximation diagonale de Padé de degré quatre a la fonction
exponentielle apporte des solutions approchées a 1'équation de capturc. donnant le taux de
mortalité par péche tant futur que passé. Dans un cas comme dans ["autre, nous démontrons
que I'approximation qui ¢n résulte, ainsi que 'estimation de Pope, pcuvent assez bien servir
de valeurs de départ dans la méthode de Newton donnant une solution numérique de
I"équation de capture. Nous analysons dans chaque situation Ics criteres de convergence de

la méthode de Newton.
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IN the assessment of exploited marine fisheries a pair of
coupled cquations are used to calculate the fishing mortality
rate and stock size in each time period tor a given cohort. The
first of thesc equations, the catch equation, can be written 1n
the form

(1) C/N:= F(1 —exp(—Z:))/Z,
or in the form

2y C;/N;xy = F.(exp(Z,) — /2,
where, in the ith time period,

the catch,

o
N; = the stock size at the beginning of the period,

F'; = the fishing mortality rate,
M, = the natural mortality rate, and

Z, = F, + M, = the total mortality rate.
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The other equation, the survival equation, relates the stock
sizes N; and N, by

(3) Ni.o = N, exp(—4)

Several algorithms have been presented either in the litera-
ture or as computer programs to solve equations (1) and (2).
Some of these make use of Newton’s Method as do the algo-
rithms presented herein. The program COHORT” solves the
unnecessarily complicated Murphy form (Murphy 19635) of
the catch equation with initial values arbitrarily chosen as the
fishing mortality rate solved for in the adjacent time period.

Mesnil (1978) has also used Newton’s Method on 4 sim-
plified version of cquation (2), but problems of convergence
to an extraneous solution can arise with his technique where
again initial values are not caretully selected.

Other algorithms make use of bracketing techniques. Miller
(1977) and Doubleday (1975) have used false position meth-
ods to solve equations (1) and (2), respectively, after taking
the square root of each side of these respective equations. The
program MURPHY by P. K. Tomlinson (Abramson 1971)
solves the Murphy form of the catch equation using the highly
inefficient bisection method. |

Newton’s Method, in gencral, converges more rapidly
(quadratically), if it does indeed converge., than do these
bracketing methods, and is thus the better of these techniques
if convergence to the desired solution 1s assured.

The objective of this work was to select carefully starting
values for Newton’s Method.

Programmed by W. W. Fox Jr. with modifications by I. P.
Caruso, U.S. Dep. of Commerce, National Marine Fisheries Service,
Southwest Fisheries Center, Lalolla, CA 92037, USA.

197



|9 CAN. J. FISH. AQUAT. SCI., VOL. 39. 1982

Newton’s Method

Newton’s Method 15 an iterative technique to obtain a
numerical solution of a functional equation £(X) = 0. The
iterative scheme is of the form

(4) Xnyy = X _f(Xn]/ff(Xn) H = [)5 15 2-: S

An initial estimate X, must be supplied to begin the iteration.

There exists a set of conditions attributed to Fourier which
are sufficient to ensure that the sequence gencrated in (4) will
converge to the unique zero of f in a given interval. These
conditions are recorded below in keeping with their
presentation in Burden et al. {1978).

Assume that fand f’ are continuous on the closed interval
~[a.b], and that f"'(x) exists for each x in the open interval
(a,b), and that the following Fourier conditions are satisfied:

@) fla) fb) < O;

(11)  f'(x) is strictly positive or strictly negative for all x
in [a.b];

(m) f"'(x) does not change sign for all x in (a,b);

(tv) if ¢ is the endpoint of [a,b] at which |f'(x)| is
smallest then

f () fo) =b~a

Then the sequence generated by Newton’s Method converges
to the only zero of f in (a,»), provided that x, is chosen in
(a,b).

Additionally, there are sufficient conditions that insurc
convergence provided that the initial estimate is chosen “closc
enough™ to the desired zero of f. More precisely, if fis twice
continuously differentiable on an interval [a,&], if p in [a.b]
Is such that f(p) = @, and f'(p) # 0, there exists & > 0 such
that Newton’s Method generates a sequence (x,) converging
to p for any initial estimate xy in [p — 8, p + &].

Selution of the Catch Equation Forward in Time

There are at least two ways that a close estimate to the
solution of (1) can be obtained. One such estimate can be had
from Pope’s (1972) approximation which can be written in
terms of the total mortality as

5)Y Z,=M;—log(l -~ Kexp(M./2))

where K = C,;/N, and log represents the natural logarithm.
However, the inequality

(6) K < exp(—M/2)

must hold if the argument of the logarithm is to be positive
(the subscript i/ will be suppressed except where it is needed
for clarity). For example, for M taking on all positive values
less than or equal to unity equation (6) implies that

(7Y K < 0.61.
But, from equation (1), it is clear that

K=1-—exp(—2),

so that, if
1 —exp(—2Z) < 0.61

then inequality (7) will hold. This last inequality is satisfied
provided that Z < 0,93,

Another method of approximating the solution of equation
(1) comes from an application of the diagonal Padé approxi-
mation of degree four to exp(—Z). This rational approxi-
mation 1s given by

(8) R4(Z)=(12 - 6Z + ZH/(12 + 6Z + 7%,

it exp(—Z) is replaced by R, (Z) in cquation (1), then, after
some simphfication, the quadratic equation

9 Z°—602H — DZ + 12(HM + 1) = 0

results where, for simplicity, H = 1I/K. Solutions of this
equation are given by

(10) Z=3Q2H — 1)+ V92H - 1)* — 12(HM + 1),
The solution obtained using the negative sign will be used for
reasons discussed below. For the solutions in (10) to be valid
the radicand must be nonnegative, that is,

O2H — 1" — 12(HM + 1) = 0.

This inequality is true if

(1) H=G+M+ V3 <+ M7+ 3)/6,

since the mequality

H=G3+M~-NV3+ M7+ 3)/6

can bc ruled out because H = ().
For M > 0, the function

(12) GM)=CB+M+ V3 +M?*+3)/6

1§ an increasing function of M, and thus if H is larger than the
maximum of G{M) on a given interval then inequality (1)
holds on that interval. For instance, if as before.
0=M=1,G(M)=1.39, and hence H = 1.39_ or

(13) K < 0.72

18 sufficient for (11) to be true. But (13) holds if Z =< 1.27 so
that the estimate stemming from equation (10) is known to be
valid for a wider range of total mortality values than that given
by equation (5). -

To balance this favorable view of the estimate given by
equation (10) it should be noted that, as the range of M
becomes smaller, equation (5) is valid for a slightly larger
range of total mortality values. For example, for
0 =M= 0.2, the estimate given by (5) is viable for
Z = 2.35 whereas (10) is known to hold for Z = 2.09. How-
ever, the initial cstimate provided by (10) is, in general, more
accurate than that given by (5) over a wide range of total
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mortalities as 1s indicated in Table 1. Hence, in the algorithms
presented below, the initial estimate is taken from equation
(10) where valid.

It 1s easy to see that 1if the plus sign 1s used in equation (10)
and if H = G(M) then

L=Z0H -3>6G(M) —3=346forM = 0.

This conservative lower bound precludes the use of this form
for Z in a more or less realistic range. Furthermorc, empirical
evidence indicates that for large values of Z for which (11)
holds (e.g. small £ and large M) the above yields a gross
overestimate. Thus, in (10) the negative sign is chosen and to
reduce round-off error this Initial estimate is written in the
form

(14) Z = A/(B + VB — A)
where
A=12HM + Dand B = 3Q2H — 1),

In the event that (11} 1s not satisfied, Z will be relatively
large. Indeed, if H << G(M) then Z > 1.2 for any M. Hence
exp(—Z) will be relatively small, and from (1) 1t 1s apparent
that, 1n this casc.

F/Z=~C/N=K.
Solving for Z provides the following mitial estimatc
(15) 2 =M/(1 — K)=MH/(H - 1).

In the algorithm presented below H 1s compared to G(M).
If (11} holds then (14) is used to obtain the starting value; if
not then (15) yields the 1nitial estimate.

From equation (1) the function f can be defined by

(16) f(Z) =(Z — M) — exp(~Z))/Z) — K
The first derivative is given by
(17 f(Z) = [Z(Z — M)exp(—Z)

+ M(1 — exp(—=2))}/Z°

A somewhat complicated expression for the second
derivative indicates that f 15 twice continuously dif-
ferentiable for all Z > 0. Furthermore, since exp(—Z) <
| for Z > 0 it is clear that /7 (Z) > 0 for all Z > 0. Now
JiM)=—-K<0, and IlImf (Z) =1 — K > 0, together

2—r

with the fact that f is increasing for Z = M implies that f has
a unique zero, say P, in an interval of the form [M, D] for D
sufficiently large. Furthermore, f'(P) # 0 and hence New-
ton’s Method will converge to P provided that the initial
estimate 15 selected sufficiently close to P. Although it is not
possible to determine how close the starting value must be to
P, experience indicates that the estimates given by (14) and
(15) are accurate enough to insure convergence.

Newton's Method along with cither (14) or (15) yields an
algorithm for solving equation (1) which can now be outlined.
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TABLE |. Selected results of a comparison of the estimates for the
fishing mortality rate obtained using Pope’s estimate (eq. (3) and {18)
and the Padée approximation (eq. {14) and (20)). The range for £ 1s
from 0.1 to 2.0 in steps of 0.1 with M ranging from (.1 to 1.0 in the
same increments. The absolute value of the relative error 1s given to

four places for sake of comparison,

Selected values

Absolute relative error

Forward solution

Backward solution

Natural Fishing
mortality mortality Eq. (5)  Eq. (14)  Eq. (I18)  Egq. (20
0.1 0.1 0.0007 0.0000 0.0001 0.0000
0.5 0.0049 0.0001 0.0030 0.0003
.0 0.0135 0.0019 0.0049 0.0021
1.5 0.0278 0.0094 (0.0060 0.0107
0.4 0.1 0.0021 0.0000 0.0019 0.0000
(3.5 0.0170 0.0004 0.0102 0.0006
1.0 0.05006 0.0032 0.0178 0.0050
1.5 0.1132 0.0131 0.0222 0.0218
0.7 0.1 0.0035 0.0001 0.0031 0.0001
0.5 (0.0275  (.0009 0.0163 0.0017
1.0 0.0862  0.0049 0.0288 0.0107
£.5 0.2130  0.0170 0.0364 (.0431
1.0 0.1 0.0049  0.0001 0.0044 0.0003
0.5 0.0379  0.0014 0.0220 0.0040
1.0 0.1238 0.0069 (,0388 0.0213
1.5 0.3545 0.0211 ().01493 0.0884

ALGORITHM 1. Suppose C'; and M; are known and that N, has
been calculated in the previous step.

It C; = 0set F;, = 0and go to step 11,
fC;,+0setH =N,/C,;
Calculate G{M,) using equation (12);
If H= G(M,) go to step 7;
Calculate Z, using cquation (15);
. Go to step 8;
Calculate Z;"” using equation (14);
. Forn =0, 1, 2---, do:
(i) Calculate f(Z,!"") via equation (16)
(ii) Calculate f'(Z,"*") from expression (17)
(i) Set Z/"" " = Z/" — f(Z")/ f(Z/™)
(V) IE1Z" D — Z/™ = 5 X 107°/Z% " g0 to (i):
9. Accept Z, = Z/"""as an approximate solution of
equation (1);
10. Set F,' — Zf — M,-';
11. Set N;iy = Niexp(— (F; + M})).

Q0 ~1 O Lh Ju L) b e

Solution of the Catch Equatidn Backward in Time

As in the previous scction there are at least two choices for
a value of the total mortality to initiate Newton’s Method. The
tirst of these 1s again produced by Pope’s (1972) estimate in
the form

(18) Z;, = log(l + Kexp(—M.,/2) + M,

where K = C;/N,;.,. The second approximation for Z, is
obtained by substituting the diagonal Padé approximation of
degree four for exp(Z), which is the reciprocal of equation
(8), into equation (2). Simplification yields, with

H = /K,
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(19) Z° — 6(2H + DZ + 12(HM + 1) = 0.

For reasons similar to those mentioned above, the pertinent
solution of (19) 1s given by

Z=32H + 1) — VOQ2H + 1)) — 12(HM + 1).

or, to reduce round-off error

(200 Z = A/(B + VB’ — A), with B = 32H + 1)
and A = 12(HM + ).

As before, this approximation is valid if H = g(M) where
now g(M} 1s given by

g(M) = (— (M — 3) + V(M — 3)* + 3)/6

which is a positive, increasing function of M for all M = Q.
To obtain an idea of the range of total mortality for which (20)
holds, note that

H=N,_\/N;: = exp(— Z)).
Thus if,
exp(— £;) = g(M),
That 1s, 1f
Zi = —log(g(M))
then
(21) H = g(M).

For example, iIf 0 = M = 0.8, then g(M) = 0.1 Thus, if
Z; = log(10) = 2.3, then H = exp(—Z;)) = 0.1 and (21)
haolds.

Thus the approximation given by (20) is valid for a wide
range of values of total montality. [naccuracies occur, how-
ever, as Z increases because the diagonal Padé approximation
of degree four estimates exp(Z) accurately when Z 1s small.
but inaccurately as Z becomes larger. For example, if
Z = 0.5, the error in this approximation is less than 7 x 107>
while for Z = 1.5 the error 1s less than 0.053. It should be
noted that this range of values compares favorably with that
given by Pope (1972) where M < 0.3 and F; = 1.2 is given
as the range ot values for which the approximation for F,
stemming from (18) vields adequate accuracy. However,
equation (20) gives a better approximation than does (18) for
smaller values of Z as 1s evident from Table 1. But {2€}) is not
valid for larger values of Z, whereas (18) holds forall Z = Q;
though accuracy is lost as Z increases. In the algorithm given
here, if H <C 0.5, that is, if Z > 0.69, the approximation in
(18) 1s used instead of that given by (20). This choice is
explained below.

The estimate for Z; given in (20) provides a starting value

tor smaller values of total mortality while the approximation

for Z; given in (18) gives a starting value for larger values of
Z; to begin the iterative process for solving equation (2)
numerically via Newton’s Method. This yields the following

CAN. J. FISH. AQUAT. SCIL., VOL. 39, 1982

algorithm to solve f(Z) = 0 where
(22) f(Z) = (Z — M)(exp(Z) — 1)/Z — K.

ALGORITHM lI. Suppose that C;, and M; are known and that
N+ has been calculated 1n the previous step.

1. It C;, = 0 set F; = 0 and proceed to step 9,

2. Set H=N;.,/C,and X = | /H;

3, It H < 0.5 go to step 6;

1. UHE equation (20) to estimate Z; and denote this value by
ZI_E 1;

5. Go to step 7;

6. Use equation (18) to approximate Z; and denote this
value by Z";

7. Usc Newton’s Method as outlined in Algorithm I to
obtain an approximate solution, Z;, for equation (2);

8. Set F, =72, -~ M

Q. Set hr,- = iV, EXP(_F;- + M;)

[t can now be shown that the function defined by (22)
satisfies the Fourier conditions on the interval [M. M + X]. In

order to proceed, the tirst and second derivatives of f are
nceded. These are given, respectively, by

(23) f(Z) = (Z(Z — M)exp(Z) + M(exp(Z) — 1))/ Z",
and
24) f(Z) = (Z°(Z — M)exp(Z)
+ EM((Z — Dexp(Z) + )Y/ 2°
Obviously fand f* are continuous on [M, M + K] and f''{Z)
exists forall Zin (M, M + K). The Fourier conditions will be
verified 1n the order presented above.
(1) Substitution gives
fM)y=—-—K <0
and

fM + K) = K(exp(M + K].— /(M + K) — K

Using the well known result

(25) exp(Z) > Z + 1 for Z > 0,

it 1s easy to see that, in the present case,
(exp(M + K) — 1)/(M + K)y>1,

50 that

f(M + K)>0.

(i1) Since Z > M 1t 1s clear trom an examination of {23) that
{2y > 0.
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(1i1) To show that f/'(Z) > QO forall Z in (M, M + K) all
that needs to be demonstrated 1s that the expression (£ — 1)
exp(Z) + 11n (24)1s positive. But this ts an increasing tfunc-
tion with a minimum of zcro for Z = 0,

(1v) Since f''(Z) > 0, /" assumes its smallest value in mag-
nitude at Z = M. Thus, to verity the last Fourter condition
caonsider the expression

S(M)/f (M) = KM [(exp(M) — 1),
Again from (25), M /(exp(M) — 1) < | so that
M/ M| <K=M+K-M

and condition (1v) holds.

Now that the Founer conditions have been verified the only
thing remaining is to show that the 1nitial estimates provided
in equations (18) and (20) lie in the interval (M, M + K). To
show that Pope’s estimate lies in this interval the following
inequality must hold:

(26) M < log(exp(M) + Kexp(M/2)) <M + K.

This 1s equivalent to

27) 0 < Kexp(M/2) <exp(M + K) — exp(M).
Clearly the left incquality holds. So consider the rnight
inequality, or, equivalently, sincec exp(K) — 1 > 0,

(28) K/(exp(K) — 1) < exp(M/2).

But, again from (25), (28) obviously holds, and hence (27)
and (26) are true.

To demonstrate that the initial estimate provided in (20)
falls in this interval 1s somewhat more involved, but 1s, none-
theless, straight-forward. First the inequality

29) A/(B+ VB —A)>M
must be verified. But this 15 equivalent to
A—2BM + M >0,if A — BM > 0.

Substituting A = 12 (HM + 1) and B = 3 (2H + |) gives
upon simplification

M —6M+ 12> 0
which 1s always true since this quadratic in M has a minimum
value of three. Hence, (29) holds provided that A —
BM > 0. But this 1s the same as

H> (M- 4)/2M

which 1s, since H > 0, obviously satisfied for M < 4.
Finally the mequality

(30) A/(B+ VB — A<M+ K

must be considered. This is equivalent to the mequality

A—-—2BM+ K) - (M + K) <0,
if A — B(M + K) >0,

which upon replacement of A and B, reduces to
(M + K) — 6(M + K) <0.
This last inequality holds previded that

(31) K<6-—-M

which, in turn holds for M < 4 and K << 2. However, the
inequalityA — B(M + K) > D must also be validated. Upon
substitution for A and B this bccomes

2MH  + 2 - MH —1>0.

The quadratic in & on the left side can be shown to be positive
for H > 0.5. Thus, 1 summation, (29), (30) and (31} hold
provided that M < 4 and H > 0.5 (K < 2).

The requirement M < 4 15 1 practice no restriction. The
condition H > 0.5 was taken into account in the algorithm
presented above by switching to Pope’s estimate when this
condition is not true.

Example

Catch data for the West Greenland Atlantic cod ((radus
morhua) for 1956 through 1966 have been analvzed by
Schumacher (1971). Doubleday (1976) used these data to
illustrate a least squares approach for obtaining tishing mor-
tality rates given catch at age data. From the catch data
presented in Doubleday (1976) the 1951 and 1953 cohorts
were selected to demonstrate the effectiveness of the above
algorithms. First, results of an application of Virtual Popu-
lation Analysis {VPA) utilizing Algorithm II are presented
Table 2. Following Schumacher, values of M = 0.2 and
F, = 0.8 (fishing mortality rate in the last time period) were
used for each of these cohorts. In cach stage of VPA, fishing
mortality rates were calculated to an accuracy of six signifi-
cant digits (5 X 107°). This degree of accuracy was imposed
so that the population size would be precise. Note that three
or lcss iterations were required at each stage ot VPA to yield
this accuracy.

Next Algorithm [ was used to solve forward mn time with
initial stock size taken from the results of the VPA. The
number of iterations required in each step 1s incorporated into
Table 2.

Discussion

Newton’s Method was chosen tor use 1n the above algo-
rithm because of its rapid convergence even though evaluation
of the function and its derivative is required at each step.
However, an examination of the dcrivative 1n each case indi-
cates that careful programming will require only simple opet-
ations for its cvaluation.

It should be apparent at this point that Pope’s estimate can
be used instecad of the Padé approximation to obtain a starting
value for Newton’s Method 1n both algorithms. However, as
already mentioned, and as demonstrated 1n Table 1, equation
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TaBLE 2. Catch data for the 1953 and 1951 cohorts of the West Greenland Cod were chosen
from Doubleday (1976). With F, = 0.8 in 1966 and 1965, and with M = 0.2 a VPA wuas carried
out using Algorithm II. The number of itcrations rcquired at each stage is fisted in the column
headed by Backward. Then using the stock sizes calculated in 1956, Algorithm I was uscd to solve
forward in time. The numbecr of iterations needed al each step is given in the last column.

Number of iterations

Caich Fishing Population size
Year Age  (in 1000°s)  mortahty (in 1000°s) Backward  Forward
(1953 cohort)
1956 3 209 (.000652 353612 I l
1957 4 19333 0.076566 289324 I l
1958 5 15136 0.079054 219419 ] l
1959 6 27411 (1.200397 165990 2 2
1960 7 202350 (0.223314 111222 2 2
1961 8 23126 .427468 72836 2 2
1962 9 13772 (1.490300 38890 2 2
1963 10 6768 0.477891 13501 2 2
1964 11 4138 0.609802 9900 2 2
1965 12 1 864 0.620121 4403 2 2
1966 13 981 0. 8OO0 1940 " 2
(1951 cohort)
1956 5 4996 0.088252 63161 1 I
1957 6 9362 0.236548 48843 2 2
1958 7 7501 0.302290 31565 2 2
1959 8 3881 0.252614 19102 2 2
1960 9 2743 0.284961 2148 2 2
1961 10 2333 0.418190 7480 2 2
1962 |1 1709 0.621763 4031 2 2
1963 |2 1156 1.222824 1772 3 3
1964 13 321 1.648693 427 3 3
1965 14 34 0.800000 67 2

(14) provides a more precise estimate for Z i equation (1)
than docs cquation (5) for a wider range of F and M, while
cquation (20) yields a better approximation for Z 1n cquation
(2) than docs equation (18) for smaller values of Z. To deter-
mine what effect this has upon the above algorithms, test runs
were made with F ranging from 0.1 to 2.0 in steps of 0.1 and
with M going from 0.1 to 1.0 in the same increments, When
equation (5) was substituted for equation (14) in Algorithm |
the number of iterations increased from an average of 2.64 to
an average of 3.74. With equation (18) replacing equation
(20) in Algorithm Il an average of 2.99 iterations were
required rather than 2.74. Thus, in cach case use of the Padé
approximation provided a savings in the number of itcrations.
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